Conventional wired networks are subject to being tapped by a variety of means, whether copper or fiber connections are used. In addition, methods of network snooping exist that make such eavesdropping minimally invasive, but no less significant. Wireless networking has additional characteristics that also decrease physical network security. As new technologies emerge, the potential for loss of company information through lax physical security must be carefully evaluated and steps taken to mitigate the risk.

In addition to automated security measures, such as intrusion detection and direct wiring monitoring, careful network management procedures can enhance physical security. Proper network design is critical to maintaining the desired level of security. In addition to the measures used on wired networks, wireless networks should be protected with encryption.

Wired Network Topology Basics
Everyone involved with local area networking has a basic understanding of network wiring and cabling. Modern LANs are almost exclusively Ethernet hub-and-spoke topologies (also called star topologies). Individual cable runs are made from centralized active hubs to each workstation, network printer, server, or router. At
today’s level of technology, these active hubs may perform additional functions, including switching, VLAN (virtual LAN) filtering, and simple Layer 3 routing. In some cases, relatively innocuous decisions in configuring and interconnecting these devices can make a world of difference in a network’s physical security.

An illustration of network topology elements is shown in Exhibit 1. The exhibit shows the typical user-to-hub and hub-to-hub connections, as well as the presence of switching hubs in the core of the network. Three VLANs are shown that can theoretically separate users in different departments. The general purpose of a VLAN is to isolate groups of users so they cannot access certain applications or see each other’s data. VLANs are inherently difficult to diagram and consequently introduce a somewhat unwelcome complexity in dealing with physical layer security. Typically, a stand-alone router is used to interconnect data paths between the VLANs and to connect to the outside world, including the Internet, through a firewall. A so-called Layer 3 switch could actually perform the non-WAN functions of this router, but some sort of WAN router would still be needed to make off-site data connections such as to the Internet.
This article discusses the physical layer security issues of each component in this network design as well as the physical security of the actual interconnecting wiring links between the devices.

SHARED HUBS

The original concept of the Ethernet network topology was that of a shared coaxial media with periodic taps for the connection of workstations. Each length of this media was called a segment and was potentially interconnected to other segments with a repeater or a bridge. Stations on a segment listened for absence of signal before beginning a transmission and then monitored the media for indication of a collision (two stations transmitting at about the same time). This single segment (or group of segments linked by repeaters) is considered a collision domain, as a collision anywhere in the domain affects the entire domain. Unfortunately, virtually any defect in the main coax or in any of the connecting transceivers, cables, connectors, or network interface cards (NICs) would disrupt the entire segment.

One way to minimize the effects of a single defect failure is to increase the number of repeaters or bridges. The shared hub can decrease the network failures that are a result of physical cable faults. In the coaxial-Ethernet world, these shared hubs were called multi-port repeaters, which closely described their function. Additional link protection was provided by the evolution to twisted-pair Ethernet, commonly known as 10BaseT. This link topology recognizes defective connections and dutifully isolates the offending link from the rest of the hub, which consequently protects the rest of the collision domain. The same type of shared network environment is available to 10BaseF, 100BaseT, FX, and SX (fast Ethernet); and 1000BaseT, TX, FX, SX (gigabit Ethernet).

Shared hubs, unfortunately, are essentially a party line for data exchange. Privacy is assured only by the courtesy and cooperation of the other stations in the shared network. Data packets are sent out on the shared network with a destination and source address and the protocol custom dictates that each workstation node "listens" only to those packets that have its supposedly unique address as the destination. Conversely, a courteous workstation would listen exclusively to traffic addressed to itself and would submit a data packet only to the shared network with its own uniquely assigned address as the source address. Right?

In practice, it is possible to connect sophisticated network monitoring devices, generically called network sniffers to any shared network and see each and every packet transmitted. These monitoring devices are very expensive (US$10,000–$25,000) and high-performance, specialized test equipment, which would theoretically limit intrusion into networks. However, much lower-performance, less-sophisticated, packet-snooping software is readily available and can run on any workstation (including
PDAs). This greatly complicates the physical security problem, as any connected network device, whether authorized or not, can snoop virtually all of the traffic on a shared LAN.

In addition to the brute-force sniffing devices, a workstation may simply attempt to access network resources for which it has no inherent authorization. For example, in many types of network operating system (NOS) environments, one may easily access network resources that are available to any authorized user. Microsoft's security shortcomings are well documented, from password profiles to NetBIOS and from active control structures to the infamous e-mail and browser problems. A number of programs are available to assist the casual intruder in unauthorized information mining.

In a shared hub environment, physical layer security must be concerned with limiting physical access to workstations that are connected to network resources. For the most part, these workstation considerations are limited to the use of boot-up, screen-saver, and login passwords; the physical securing of computer equipment; and the physical media security described later. Most computer boot routines, network logins, and screen savers provide a method of limiting access and protecting the workstation when not in use. These password schemes should be individualized and changed often.

Procedures for adding workstations to the network and for interconnecting hubs to other network devices should be well documented and their implementation limited to staff members with appropriate authorization. Adds, moves, and changes should also be well documented. In addition, the physical network connections and wiring should be periodically audited by an outside organization to ensure the integrity of the network. This audit can be supplemented by network tools and scripts that self-police workstations to determine that all of the connected devices are known, authorized, and free of inappropriate software that might be used to intrude within the network.

SWITCHED HUBS EXTEND PHYSICAL SECURITY

The basic security fault of a shared network is the fact that all packets that traverse the network are accessible to all workstations within the collision domain. In practice, this may include hundreds of workstations. A simple change to a specialized type of hub, called a switched hub, can provide an additional measure of security, in addition to effectively multiplying data throughput of the hub.

A switched hub is an OSI Layer 2 device, which inspects the destination media-access layer (MAC) address of a packet and selectively repeats the packet only to the appropriate switch port segment on which that MAC address device resides. In other words, if a packet comes in from any port, destined for a known MAC address X_1 on port 3, that
packet would be switched directly to port 3 and would not appear on any other outbound port. This is illustrated in Exhibit 2. The switch essentially is a multi-port Layer 2 bridge that learns the relative locations of all MAC addresses of devices that are attached and forms a temporary path to the appropriate destination port (based on the destination MAC address) for each packet that is processed. This processing is normally accomplished at “wire speed.” Simultaneous connection paths may be present between sets of ports, thus increasing the effective throughput beyond the shared hub.

Switched hubs are often used as simple physical security devices, because they isolate the ports that are not involved in a packet transmission. This type of security is good if the entire network uses switched connections. However, switched hubs are still more expensive than shared hubs, and many networks are implemented using the switch-to-shared hub topology illustrated in Exhibit 1. While this may still provide a measure of isolation between groups of users and between certain network resources, it certainly allows any user on a shared hub to view all the packets to any other user on that hub.

Legitimate testing and monitoring on a switched hub is much more difficult than on a shared hub. A sniffing device connected to port 7 (Exhibit 2), for example, could not see the packet sent from port 8 to port 3! The sniffer would have its own MAC address, which the switch would recognize, and none of the packets between these two other nodes would be sent. To alleviate this problem somewhat, a feature called port mirroring is available on some switches. Port mirroring can enable a user to temporarily create a shared-style listening port on the switch that duplicates all the traffic on a selected port. Alternatively, one could temporarily insert a shared hub on port 3 or port 8 to see each port’s respective traffic. An inadvertent mirror to a port that is part of a shared-hub network can pose a security risk to the network. This is particularly serious
if the mirrored port happens to be used for a server or a router connection, because these devices see data from many users.

To minimize the security risk in a switched network, it is advisable to use port mirroring only as a temporary troubleshooting technique and regularly monitor the operation of switched hubs to disable any port mirroring. In mixed shared/switched networks, Layer 2 VLANs may offer some relief (the cautions of the next section notwithstanding). It may also be possible to physically restrict users to hubs that are exclusively used by the same department, thus minimizing anyone's ability to snoop on other departments' data. This assumes that each department-level shared hub has an uplink to a switched hub, perhaps with VLAN segregation.

In addition, administrators should tightly manage the passwords and access to the switch management interface. One of the most insidious breaches in network security is the failure to modify default passwords and to systematically update control passwords on a regular basis.

VLANs Offer Deceptive Security

One of the most often used network capabilities used for enhancing security is the virtual LAN (VLAN) architecture. VLANs can be implemented at either Layer 2 or Layer 3.

A Layer 2 VLAN consists of a list of MAC addresses that are allowed to exchange data and is rather difficult to administer. An alternative style of Layer 1/Layer 2 VLAN assigns physical ports of the switch to different VLANs. The only caveat here is that all of the devices connected to a particular switch port are restricted to that VLAN. Thus, all of the users of shared hub 1 (Exhibit 1) would be assigned to switch hub port 1's VLAN. This may be an advantage in many network designs and can actually enhance security.

Here is the deception for Layer 2. A Layer 2 VLAN fails to isolate packets from all of the other users in either a hierarchical (stacked) switch network or in a hybrid shared/switched network. In the hybrid network, all VLANs may exist on any shared hub, as shown in Exhibit 3. Therefore, any user on shared hub 2 can snoop on any traffic on that hub, regardless of VLAN. In a port-based Layer 2 VLAN, administrator must be certain that all users that are connected to each port of the VLAN are entitled to see any of the data that passes to or from that port. Sadly, the only way to do that is to connect every user to his or her own switch port, which takes away the convenience of the VLAN and additionally adds layers of complexity to setup. A MAC-based VLAN can still allow others to snoop packets on shared hubs or on mirrored switch hubs.

A Layer 3 VLAN is really a higher-level protocol subnet. In addition to the MAC address, packets that bear Internet Protocol (IP) data possess a source and destination address. A subset of IP addresses, called a subnet, consists of a contiguous range of addresses. Typically, IP devices recog-

6

DATA COMMUNICATIONS MANAGEMENT
nize subnets through a base address and a subnet mask that "sizes" the address range of the subnet. The IP protocol stack screens out all data interchanges that do not bear addresses within the same subnet. A Layer 3 router allows connection between subnets. Technically, then, two devices must have IP addresses in the same subnet to "talk," or they must connect through a router (or series of routers) that recognizes both subnets.

The problem is that IP data packets of different subnets may coexist within any collision domain — that is, on the same shared hub or switched link. The TCP/IP protocol stack simply ignores any packet that is not addressed to the local device. As long as everybody is a good neighbor, packets go only where they are intended. Right.

In reality, any sniffer or snooping program on any workstation can see all data traffic that is present within its collision domain, regardless of IP address. The same was true of non-IP traffic, as was established previously. This means that protecting data transmission by putting devices in different subnets is a joke, unless care is taken to limit physical access to the resources so that no unauthorized station can snoop the traffic.

VLAN/SUBNETS PLUS SWITCHING
A significant measure of security can be provided within a totally switched network with VLANs and/or subnets. In fact, this is exactly the scheme that is used in many core networks to restrict traffic and resources to specific, protected, paths. For the case of direct access to a data connection, physical security of the site is the only area of risk. As long as the physical connections are limited to authorized devices, port mirroring is off, and no remote snooping (often called Trojan horse) programs are running surreptitiously and firewalling measures are effective, then the protected network will be reasonably secure, from the physical layer standpoint.

EXHIBIT 3 — VLANs A, B, and C Behavior across Both Switched and Shared Ethernet Hubs
Reducing the risk of unauthorized access is very dependent on physical security. Wiring physical security is another issue that is quite important, as is shown in the following section.

WIRING PHYSICAL SECURITY

Physical wiring security has essentially three aspects: authorized connections, incidental signal radiation, and physical integrity of connections. The first requirement is to inspect existing cabling and verify that every connection to the network goes to a known location. Organized, systematic marking of every station cable, patch cord, patch panel, and hub is a must to ensure that all connections to the network are known and authorized.

Where does every cable go? Is that connection actually needed? When moves are made, are the old data connections disabled? Nothing could be worse than having extra data jacks in unoccupied locations that are still connected to the network. EIA/TIA 569-A Commercial Building Standard for Telecommunications Pathways and Spaces and EIA/TIA 606 The Administration Standard for the Telecommunications Infrastructure of Commercial Buildings give extensive guidelines for locating, sizing, and marking network wiring and spaces.

In addition, the cable performance measurements that are recommended by ANSI/TIA/EIA-568-B Commercial Building Telecommunications Cabling Standard should be kept on file and periodically repeated. The reason is simple. Most of the techniques that could be used to tap into a data path will drastically change the performance graph of a cable run. For example, an innocuous shared hub could be inserted into a cable path, perhaps hidden in a wall or ceiling, to listen in to a data link. However, this action would change the reported cable length, as well as other parameters reported by a cable scanner.

Network cabling consists of two types: 4-pair copper cables and 1-pair fiber-optic cables. Both are subject to clandestine monitoring. Copper cabling presents the greater risk, as no physical connection may be required. As is well known, high-speed data networking sends electrical signals along two or more twisted pairs of insulated copper wire. A 10BaseT Ethernet connection has a fundamental at 10 MHz and signal components above that. A 100BaseT Fast Ethernet connection uses an encoding technique to keep most of the signal component frequencies below 100 MHz. Both generate electromagnetic fields, although most of the field stays between the two conductors of the wire pair. However, a certain amount of energy is actually radiated into the space surrounding the cable.

The major regulatory concern with this type of cabling is that this radiated signal should be small, so it does not interfere with conventional radio reception. However, that does not mean that it cannot be received!
In fact, one can pick up the electromagnetic signals from Category 3 cabling anywhere in proximity to the cable. Category 5 and above cabling is better only by degree. Otherwise, the cable acts like an electronic leaky hose, spewing tiny amounts of signal all along its length.

A sensor can be placed anywhere along the cable run to pick up the data signal. In practice, it is (fortunately) a little more difficult than this, simply because this would be a very sophisticated technique and because access, power, and an appropriate listening point would also be required. In addition, bidirectional (full duplex) transmission masks the data in both directions, as do multiple cables. This probably presents less of a threat to the average data network than direct physical connection, but the possibility should not be ignored.

Fiber cable tapping is a much subtler problem. Unlike that on its copper equivalent, the signal is in the form of light and is carried within a glass fiber. However, there are means to tap into the signal if one has access to the bare fiber or to interconnect points. It is true that most of the light passes longitudinally down the glass fiber. However, a tiny amount may be available through the sidewall of the fiber, if one has the means to detect it. Presumably, this light leakage would be more evident in a multimode fiber, where the light is not restricted to so narrow a core as with single-mode fiber. In addition, anyone with access to one of the many interconnection points of a fiber run could tap the link and monitor the data.

Fiber-optic cable runs consist of patch and horizontal fiber cable pairs that are connectorized at the patch panel and at each leg of the horizontal run. Each connectorized cable segment is interconnected to the next leg by a passive coupler (also called an adapter). For example, a typical fiber link is run through the wall to the workstation outlet. The two fibers are usually terminated in an ordinary fiber connector, such as an SC or one of the new small-form factor connectors. The pair of connectors is then inserted into the inside portion of the fiber adapter in the wall plate, and the plate is attached to the outlet box. A user cable or patch cord is then plugged into the outside portion of the same fiber adapter to connect the equipment. If some person were to have access to removing the outlet plate, it would take a few seconds to insert a device to tap into the fiber line, since it is conveniently connectorized with a standard connector, such as the SC connector.

Modern progress has lessened this potential risk somewhat, as some of the new small-form factor connector systems use an incompatible type of fiber termination in the wall plate. However, this could certainly be overcome with a little ingenuity.

Most of the techniques that involve a direct connection or tap into a network cable require that the cable’s connection be temporarily interrupted. Cable-monitoring equipment is available that can detect any momentary break in a cable, to make the reconnection of a cable through
an unauthorized hub, or to make a new connection into the network. This full-time cable-monitoring equipment can report and log all occurrences, so that an administrator can be alerted to any unusual activities on the cabling system.

Security breaches happen and, indeed, should be anticipated. An intrusion detection system should be employed inside the firewall to guard against external and internal security problems. It may be the most effective means of detecting unauthorized access to an internal network. An intrusion detection capability can include physical layer alarms and reporting, in addition to the monitoring of higher layers of protocol.

WIRELESS PHYSICAL LAYER SECURITY

Wireless networking devices, by their very nature, purposely send radio signals out into the surrounding area. Of course, it is assumed that only the authorized device receives the wireless signal, but it is impossible to limit potential eavesdropping. Network addressing and wireless network "naming" cannot really help, although they are effective in keeping the casual user out of a wireless network.

The only technique that can ensure that someone cannot easily monitor wireless data transmissions is data encryption. Many of the wireless LAN devices on the market now offer wired-equivalent privacy (WEP) as a standard feature. This is a 64-bit encryption standard that uses manual key exchange to privatize the signal between a wireless network interface card (WNIC) and an access point bridge (which connects to the wired network). As the name implies, this is not expected to be a high level of security; it is expected only to give one approximately the same level of privacy that would exist if the connection were made over a LAN cable.

Some WNICs use a longer encryption algorithm (e.g., 128-bit encryption), which may provide an additional measure of security. However, there is an administration issue with these encryption systems, and keys must be scrupulously maintained to ensure integrity of the presumed level of privacy.

Wireless WAN connections, such as the popular cellular-radio systems, present another potential security problem. At the present time, few of these systems use any effective encryption whatsoever and thus are accessible to anyone with enough reception and decoding equipment. Strong-encryption levels of SSL should certainly be used with any private or proprietary communications over these systems.

CONCLUSION

A complete program of network security should include considerations for the physical layer of the network. Proper network design is essential in creating a strong basis for physical security. The network practices should include the use of switching hubs and careful planning of data
paths to avoid unnecessary exposure of sensitive data. The network manager should ensure that accurate network cabling system records are maintained and updated constantly to document authorized access and to reflect all moves and adds. Active network and cable monitoring may be installed to enhance security. Network cable should be periodically inspected to ensure integrity and authorization of all connections. Links should be rescanned periodically and discrepancies investigated. Wireless LAN connections should be encrypted at least to WEP standards, and strong encryption should be considered. Finally, the information security officer should consider the value of periodic security audits at all layers to cross-check the internal security monitoring efforts.

James Trulove has more than 25 years of experience in data networking with companies such as Lucent, Ascend, AT&T, Motorola, and Intel. He has a background in designing, configuring, and implementing multimedia communications systems for local and wide area networks, using a variety of technologies. He writes on networking topics and is the author of LAN Wiring, An Illustrated Guide to Network Cabling and A Guide to Fractional T1, as well as numerous articles on networking, and is the editor of Broadband Networking.